
5-5-5 汚泥系バイオマス

汚泥系バイオマスとして、下水汚泥、集落排水汚泥及びし尿・浄化槽汚泥がある。薩摩川内市における下水汚泥・集落排水汚泥・し尿・浄化槽汚泥処理体系は図5-5-5(1)に示すとおりである。 平成24年4月に稼働した川内汚泥再生処理センターにより、ほとんどが資源化されている。

●本土区域

●甑島区域

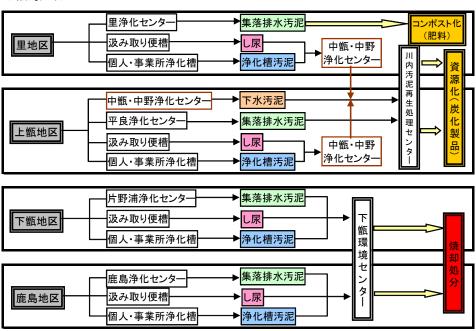


図 5-5-5(1) 薩摩川内市における下水汚泥・集落排水汚泥・し尿・浄化槽汚泥処理体系

(1)下水汚泥

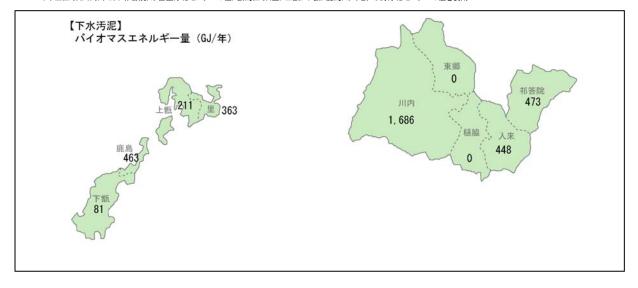
1) 賦存量

下水汚泥 (公共下水道、集落排水施設) のバイオマスエネルギー賦存量は、下記の式で求めた。

賦存量(GJ/年)=下水汚泥発生量(t/年)× $\{100(\%)$ -含水率(%) $\}$ ×固形物に対する有機物の割合 ×有機物(VS)分解率×分解 VS 当りのメタンガス発生量(Nm³-CH $_4$ /t-分解 VTS) ×メタンの低位発熱量(GJ/Nm³)

計算で用いた条件は以下に示すとおりである。

項目	詳細	出 典
下水汚泥発生量(t/年)	下水処理施設(公共下水道,集落排水施設)から発生する汚泥の量	薩摩川内市 水道局下水道課 H22 年度資料
含水率(%)	・本土地域:76.8 (宮里浄化センター年平均値)・ 甑島地域:81.1 (中甑・中野浄化センター年平均値)	各浄化センターの平成 22 年度デー タ
固形物に対する有機物の割合 (VS/TS)	公共下水道: 0.77 集落排水 : 0.75	
有機物(VS)分解率	公共下水道: 0.52 集落排水 : 0.46	「バイオマス賦存量・有効可能利用量
分解 VS 当りのメタンガス発生量 (Nm³-CH4/t-分解 VTS)	公共下水道:620 集落排水 :780	の推計」(2011.3,NEDO)
メタンの低位発熱量(GJ/Nm³)	0.036	


下水汚泥のバイオマスエネルギーの賦存量は、表 5-5-5(1)に示すとおりである。

賦存量は薩摩川内市全体で 3,725GJ/年である。賦存量の多い場所を地区別にみると、川内地 区が一番多く、祁答院地区、鹿島地区の順となっている。

表 5-5-5(1) 下水汚泥のバイオマスエネルギー賦存量

項	目	単位		地 区									
块 口		単位	川内	樋脇	入来	東郷	祁答院	里	上甑	下甑	鹿島	計	
	汚泥発生量1)	t/年	390.14	0	0	0	0	0	70.33	0	0	460.47	
ハサマルギ	含水率2)	%	76.8	76.8	76.8	76.8	76.8	81.1	81.1	81.1	81.1	-	
公共下水道 污	汚泥発生量	DW-t/年	90.51	0	0	0	0	0	13.29	0	0	103.80	
	賦存量	GJ/年	809	0	0	0	0	0	119	0	0	928	
	汚泥発生量1)	t/年	390.0	0	199.3	0	210.3	198.4	50.0	44.5	253.0	1345.5	
集落排水	含水率3)	%	76.8	76.8	76.8	76.8	76.8	81.1	81.1	81.1	81.1	_	
未洛排小	汚泥発生量	DW-t/年	90.5	0	46.2	0	48.8	37.5	9.5	8.4	47.8	288.7	
	賦存量	GJ/年	877	0	448	0	473	363	92	81	463	2,797	
賦存量	量 計	GJ/年	1,686	0	448	0	473	363	211	81	463	3,725	

- 出典:1)薩摩川内市水道局 下水道課 平成22年度資料
 - 2)各下水処理施設分析値(平成22年度)
 - 3)本土区域(川内, 入来, 祁答院)は宮里浄化センターの値, 甑島区域(里, 上甑, 下甑, 鹿島)は中甑・中野浄化センターの値を使用

2)潜在可能量

① 潜在可能量(熱量)

下水汚泥のバイオマスエネルギー潜在可能量(熱量)は、下記の式で求めた。

潜在可能量(GJ/年)=賦存量(GJ/年)×{100(%)-資源化率(%)}×ボイラー効率(%)

計算で用いた条件は以下に示すとおりである。

項目	詳細	出 典
資源化率(%)	下水汚泥の中で、処理後残渣を資源化(土壌改良剤、肥料等)している割合 ●公共下水道:100 ●集落排水 ・川内、樋脇、入来、東郷、祁答院、里、上甑:100 ・下甑、鹿島:0	薩摩川内市環境課聞取り
ボイラー効率(%)	85	「新エネルギーガイドブック 2008」,NEDO

下水汚泥のバイオマスエネルギーの潜在可能量(熱量)は、表 5-5-5(2)に示すとおりである。 潜在可能量は薩摩川内市全体で 463GJ/年である。

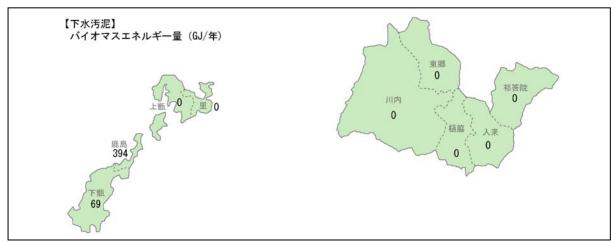

薩摩川内市の下水汚泥は、川内汚泥再生処理センターにおいて資源化されるものがほとんどであるため、潜在可能量が存在する地区は鹿島地区、下甑地区のみである。

表 5-5-5(2) 下水汚泥のバイオマスエネルギー潜在可能量(熱量)

項	B	単位		地 区									
坦		単位	川内	樋脇	入来	東郷	祁答院	里	上甑	下甑	鹿島	計	
賦存量	賦存量	GJ/年	809	0	0	0	0	0	119	0	0	928	
公共下水道	資源化率1)	%	100	100	100	100	100	100	100	100	100	_	
公共下小坦	ボイラ効率 ²⁾	%	85	85	85	85	85	85	85	85	85	_	
I	潜在可能量	GJ/年	0	0	0	0	0	0	0	0	0	0	
	賦存量	GJ/年	877	0	448	0	473	363	92	81	463	2,797	
集落排水	資源化率1)	%	100	100	100	100	100	100	100	0	0	_	
未冷排小	ボイラ効率 ²⁾	%	85	85	85	85	85	85	85	85	85	_	
	潜在可能量 GJ/年	GJ/年	0	0	0	0	0	0	0	69	394	463	
潜在可能	能量 計	GJ/年	0	0	0	0	0	0	0	69	394	463	

出典:1) 公共下水道施設で発生した下水汚泥は全て汚泥再生処理センターで炭化製品として資源化される。集落排水施設で発生した下水汚泥の中で下甑、鹿島地区のみ再利用されず焼却処分されている。その他の地域は汚泥再生処理センターで資源化される。(薩摩川内市下水道課間取り)

^{2)「}新エネルギーガイドブック2008」,NEDO

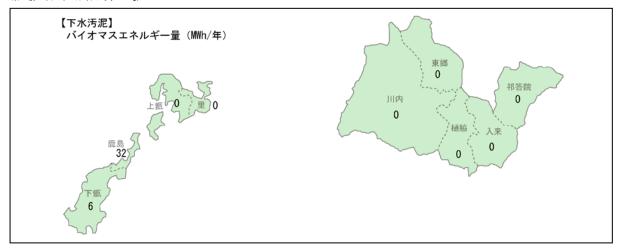
② 潜在可能量(電力量)

下水汚泥のバイオマスエネルギー潜在可能量(電力量)は、下記の式で求めた。

潜在可能量(MWh/年)=賦存量 $(GJ/年)\times\{100(\%)-$ 資源化率 $(\%)\}\times$ 発電効率/3.6[GJ/MWh]

計算で用いた条件は以下に示すとおりである。

項目	詳細	出 典
資源化率(%)	下水汚泥の中で、処理後残渣を資源化(土壌改良剤、肥料等)している割合 ●公共下水道:100 ●集落排水 ・川内、樋脇、入来、東郷、祁答院、里、上甑:100 ・下甑、鹿島:0	薩摩川内市環境課聞取り
発電効率	0.25	「新エネルギーガイドブック 2008」,NEDO


下水汚泥のバイオマスエネルギーの潜在可能量 (電力量) は、表 5-5-5(3)に示すとおりである。 潜在可能量は薩摩川内市全体で 38MWh/年である。

薩摩川内市の下水汚泥は、川内汚泥再生処理センターにおいて資源化されるものがほとんどであるため、潜在可能量が存在する地区は鹿島地区、下甑地区のみである。

表 5-5-5(3) 下水汚泥のバイオマスエネルギー潜在可能量(電力量)

項	目	単位		地 区									
垻	× 1 +			樋脇	入来	東郷	祁答院	里	上甑	下甑	鹿島	計	
	賦存量	GJ/年	809	0	0	0	0	0	119	0	0	928	
公共下水道	資源化率	%	100	1	_	_	_	_	100	1	-	-	
公共下小道	発電効率**	_	0.25	-	_	_	_	_	0.25	1	-	-	
	潜在可能量	MWh/年	0	0	0	0	0	0	0	0	0	0	
	賦存量	GJ/年	877	0	448	0	473	363	92	81	463	2,797	
集落排水	資源化率	%	100	1	100	_	100	100	100	0	0	-	
未冷排小	発電効率**	_	0.25	-	0.25	_	0.25	0.25	0.25	0.25	0.25	-	
	潜在可能量	MWh/年	0	0	0	0	0	0	0	6	32	38	
潜在可能	能量 計	MWh/年	0	0	0	0	0	0	0	6	32	38	

※:「新エネルギーガイドブック2008」,NEDO

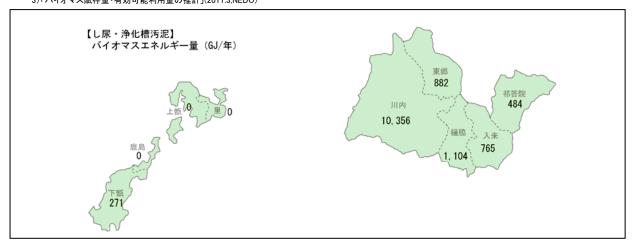
(2) し尿・浄化槽汚泥

1) 賦存量

し尿・浄化槽汚泥のバイオマスエネルギー賦存量は、下記の式で求めた。

賦存量(GJ/年)= し尿・浄化槽汚泥発生量(t/年)× $\{100(\%)$ -含水率 $(\%)\}$ ×固形物に対する有機物の割合×有機物(VS)分解率×分解VS 当りのメタンガス発生量 $(Nm^3-CH_4/t-分解VTS)$ ×メタンの低位発熱量 (GJ/Nm^3)

計算で用いた条件は以下に示すとおりである。


項目	詳細	出 典
し尿・浄化槽汚泥発生量(t/年) ※し尿・浄化槽汚泥の比重を 1 とする	個人・事業所から処理施設に持込 まれるし尿・浄化槽汚泥の量(下水 処理施設で処理される量を除く)	・薩摩川内市水道局資料(H22 年度) ・薩摩川内市環境課資料(H22 年度) ・さつま町環境センター資料(H22 年度)
含水率(%)	98	
固形物に対する有機物の割合 (VS/TS)	0.75	
有機物(VS)分解率	0.46	「バイオマス賦存量・有効可能利用量の 推計」(2011.3,NEDO)
分解 VS 当りのメタンガス発生量 (Nm³-CH ₄ /t-分解 VTS)	780	1 JE. H. J (MOTTIO) (TED O)
メタンの低位発熱量 (GJ/Nm³)	0.036	

し尿・浄化槽汚泥のバイオマスエネルギーの賦存量は、表 5-5-5(4)に示すとおりである。 賦存量は薩摩川内市全体で 13,862GJ/年である。賦存量の多い場所を地区別にみると、川内 地区が一番多い。

表 5-5-5(4) し尿・浄化槽汚泥のバイオマスエネルギー賦存量

項目	単位					地 区					計
現日 羊也	平 位	川内	樋脇	入来	東郷	祁答院	里	上甑	下甑	鹿島	ĒΙ
し尿発生量1)	kg/年	18,306,516	2,444,950	1,430,300	1,779,562	825,200	収集後,下水	く処理施設へ	586,000	0	25,372,528
浄化槽汚泥発生量 ²⁾	kg/年	35,124,220	3,254,920	2,524,900	2,771,700	1,665,000	収集後,下水	く処理施設へ	823,100	0	46,163,840
発生量(計)	kg/年	53,430,736	5,699,870	3,955,200	4,551,262	2,490,200	0	0	1,409,100	0	71,536,368
含水率3)	%	98	98	98	98	98	98	98	98	98	_
賦存量	DW-t/年	1,069	114	79	91	50	0	0	28	0	1,431
賦存量	GJ/年	10,356	1,104	765	882	484	0	0	271	0	13,862

出典:1-2)薩摩川内市 環境課(平成22年度資料)・さつま町環境センター 平成22年度資料(入来・祁答院) 3)「バイオマス賦存量・有効可能利用量の推計」(2011.3,NEDO)

2) 潜在可能量

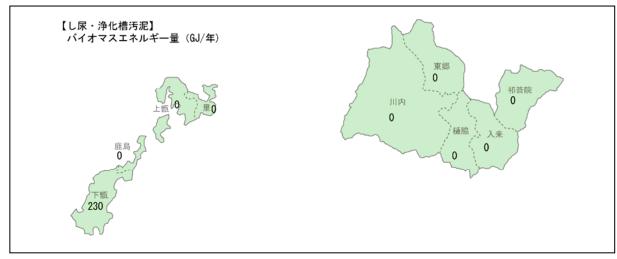
① 潜在可能量(熱量)

し尿・浄化槽汚泥のバイオマスエネルギー潜在可能量(熱量)は、下記の式で求めた。

潜在可能量(GJ/年)=賦存量(GJ/年)×{100(%)-資源化率(%)}×ボイラー効率(%)

計算で用いた条件は以下に示すとおりである。

項目	詳細	出典
資源化率(%)	し尿・浄化槽汚泥の中で、処理後残渣を資源化(土壌改良剤、肥料等)している割合 ・川内、樋脇、入来、東郷、祁答院、里、上甑:100 ・下甑、鹿島:0	薩摩川内市環境課聞取り
ボイラー効率(%)	85	「新エネルギーガイドブック 2008」,NEDO


し尿・浄化槽汚泥のバイオマスエネルギーの潜在可能量(熱量)は、表 5-5-5(5)に示すとおりである。

潜在可能量は薩摩川内市全体で 230GJ/年である。薩摩川内市では、し尿・浄化槽汚泥のほとんどが資源化されているので、利用できる地区は下甑地区のみである。

表 5-5-5(5) し尿・浄化槽汚泥のバイオマスエネルギー潜在可能量(熱量)

項目	単位		地 区									
块 口	現日 早 12	川内	樋脇	入来	東郷	祁答院	里	上甑	下甑	鹿島	計	
賦存量	GJ/年	10,356	1,104	765	882	484	0	0	271	0	13,862	
資源化率 ¹⁾	%	100	100	100	100	100	1	_	0	ı	1	
ボイラ効率 ²⁾	%	85	85	85	85	85	-	_	85	1	-	
潜在可能量	GJ/年	0	0	0	0	0	0	0	230	0	230	

出典:1)下甑、鹿島地区のみ再利用されず焼却処分されている。その他の地域は川内汚泥再生処理センターで資源化される。(薩摩川内市下水道課) 2)「新エネルギーガイドブック2008」、NEDO

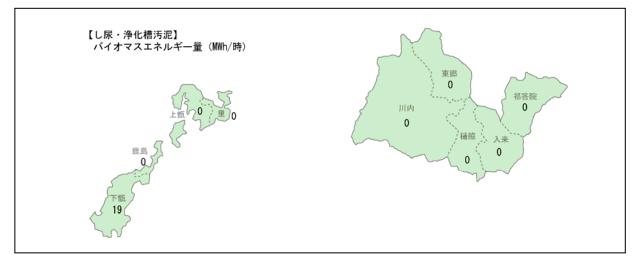
② 潜在可能量(電力量)

し尿・浄化槽汚泥のバイオマスエネルギー潜在可能量(電力量)は、下記の式で求めた。

潜在可能量(MWh/年)=賦存量(GJ/年)×{100(%)-資源化率(%)}×発電効率/3.6[GJ/MWh]

計算で用いた条件は以下に示すとおりである。

項目	詳細	出 典
資源化率(%)	し尿・浄化槽汚泥の中で、処理後残渣を資源化(土壌改良剤、肥料等)している割合 ・川内、樋脇、入来、東郷、祁答院、里、上甑:100 ・下甑、鹿島:0	薩摩川内市環境課聞取り
発電効率	0.25	「新エネルギーガイドブック 2008」,NEDO


し尿・浄化槽汚泥のバイオマスエネルギーの潜在可能量(電力量)は、表 5-5-5(6)に示すとおりである。

潜在可能量は薩摩川内市全体で19MWh/年である。利用できる地区は下甑地区のみである。

表 5-5-5(6) し尿・浄化槽汚泥のバイオマスエネルギー潜在可能量(電力量)

項目単位		地 区									
項 日	項 日		樋脇	入来	東郷	祁答院	里	上甑	下甑	鹿島	計
賦存量	GJ/年	10,356	1,104	765	882	484	0	0	271	0	13,862
資源化率1)	%	100	100	100	100	100	_	_	0	_	_
発電効率2)	-	0.25	0.25	0.25	0.25	0.25	-	_	0.25	ı	_
潜在可能量	MWh/年	0	0	0	0	0	0	0	19	0	19

出典:1)下甑地区のみ再利用されず焼却処分されている。その他の地域は川内汚泥再生処理センターで資源化される。(薩摩川内市下水道課) 2)「新エネルギーガイドブック2008」、NEDO

